An Effective Extension of the Wagner Hierarchy to Blind Counter Automata

نویسنده

  • Olivier Finkel
چکیده

The extension of the Wagner hierarchy to blind counter automata accepting infinite words with a Muller acceptance condition is effective. We determine precisely this hierarchy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wadge Hierarchy of Petri Nets ω-Languages

We describe the Wadge hierarchy of the ω-languages recognized by deterministic Petri nets. This is an extension of the celebrated Wagner hierarchy which turned out to be the Wadge hierarchy of the ω-regular languages. Petri nets are more powerful devices than finite automata. They may be defined as partially blind multi-counter automata. We show that the whole hierarchy has height ω 2 , and giv...

متن کامل

Computing Downward Closures for Stacked Counter Automata

The downward closure of a language L of words is the set of all (not necessarily contiguous) subwords of members of L. It is well known that the downward closure of any language is regular. Although the downward closure seems to be a promising abstraction, there are only few language classes for which an automaton for the downward closure is known to be computable. It is shown here that for sta...

متن کامل

Introducing New Structures for D-Type Latch and Flip-Flop in Quantum-Dot Cellular Automata Technology and its Use in Phase-Frequency Detector, Frequency Divider and Counter Circuits

Quantum-dot cellular automata (QCA) technology is an alternative to overcoming the constraints of CMOS technology. In this paper, a new structure for D-type latch is presented in QCA technology with set and reset terminals. The proposed structure, despite having the set and reset terminals, has only 35 quantum cells, a delay equal to half a cycle of clocks and an occupied area of ​​39204 nm2. T...

متن کامل

Bericht 229 Refining the Hierarchy of Blind Multicounter Languages FBI-HH-B-229/01

We show that the families (k, r)–RBC of languages accepted (in quasi-realtime) by one-way counter automata having k blind counters of which r are reversalbounded form a strict and linear hierarchy of semi-AFLs. This hierarchy comprises the families BLIND = M∩(C1) of blind multicounter languages with generator C1 := {w ∈ {a1, b1} ∗ | |w|a1 = |w|b1} and RBC = M∩(B1) of reversal-bounded multicount...

متن کامل

Computer science and the fine structure of Borel sets

(I) Wadge de ned a natural re nement of the Borel hierarchy, now called the Wadge hierarchy WH. The fundamental properties of WH follow from the results of Kuratowski, Martin, Wadge and Louveau. We give a transparent restatement and proof of Wadge’s main theorem. Our method is new for it yields a wide and unexpected extension: from Borel sets of reals to a class of natural but non Borel sets of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001